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Protected p-erythro-(2S.3R)-sphingosine was preferentially obtained by diastereoselective pentadec-

1-enylation of tert-butyl

(S)-4-formyl-2,2-dimethyloxazolidine-3-carboxylate with pentadec-1-

enyl(ethyl)zinc using either (R)-diphenyl(1-methylpyrrolidin-2-yl)methanol (DPMPM) as a chiral
catalyst or 2-(dibutylamino)ethanol as an achiral catalyst. Enantioselective alkenylation of «,f-
unsaturated aldehydes using (S)-DPMPM as a chiral catalyst affords chiral diallyl alcohols with

good enantiomeric excesses.

Sphingosine 5 and its isomers constitute an important class of
compounds (gangliosides, ceramides and sphingomyelin) with
multiple and potent biological activities such as cell growth
and protein kinase regulation; ! usually compound 5 is found as
its D-erythro-(anti)-(2S,3R) isomer in Nature.? The preparation
of optically active sphingosine has been reported.® Recently,
tert-butyl (S)-4-formyl-2,2-dimethyloxazolidine-3-carboxylate
1 was reported as a useful chiral amino(equivalent)-aldehyde.*
Asymmetric alkenylation (pentadec-l-enylation) of 1 may
become a direct method for constructing the carbon skeleton of
sphingosine. However, diastereoselective addition with diiso-
butyl(pentadec-1-enyl)alane is syn-selective (anti:syn = 1:2)
affording predominantly unnatural protected threo(syn)-
sphingosine 4; we also confirmed this selectivity.3* Therefore,
the conventional procedure requires a two-step reaction
(alkynylation and the subsequent reduction) to synthesize 3
from 1.3

Although chiral allyl alcohols are useful synthetic inter-
mediates the limited availability of more highly functionalised
chiral diallyl alcohols ® has restricted their use in synthesis.

Enantioselective addition of organozinc reagents to alde-
hydes in the presence of chiral catalysts and ligands has
attracted considerable attention.® Recently, the preparation of
alkenyl(alkyl)zinc reagent by a boron-zinc exchange reaction’
and the catalytic enantioselective alkenylation of simple
aldehydes with this reagent have been reported.

We now report the first diastereoselective synthesis of
protected D-erythro-(2S,3R)-sphingosine 3 by catalytic alkenyl-

1 (S)-DPMPM (5 mol%) catalyses the addition of oct-1-enyl(ethyl)zinc
to propanal at 0 °C in ca. 80%; e.e.® We observed that, in the presence of
(S)-DPMPM (10 mol%), hex-1-enyl(ethyl)zinc adds to benzaldehyde
at —30°C to — 15 °C in 649 yield with 929 e.e.

ation of 1 and enantioselective synthesis of chiral diallyl
alcohols 8.

Treatment of the chiral aldehyde 1 with pentadec-1-enyl-
(ethyl)zinc 27 in the presence of (R)-diphenyl(1-methylpyrrol-
idin-2-yl)methanol (DPMPM)® (10 mol%) in toluene at 0 °C
for 1.5 h gave protected sphingosine (3 and 4) in 52%; yield
(Table 1, entry 1). 'H NMR (500 MHz, C¢Dy, 60 °C) analysis
showed that erythro-(anti)-3 was the major product formed
with good diastereoselectivity (anti:syn = 4:1). A repeat
reaction in which (S)-DPMPM (10 mol%)) was used, gave
erythro-(anti)-3 as the major product but with reduced
diastereoselectivity (anti:syn = 2:1) (Table 1, entry 2). It was
also found that 2-(dibutylamino)ethanol 6 (10 mol%;,), an achiral
amino alcohol, catalyses the diastereoselective addition of 2 to
1 to afford erythro-(anti)-3 with higher diastereoselectivity
(anti:syn = 7.3:1)(Table 1, entry 3). The subsequent treatment
(deprotection) of erythro-(anti)-3 with 1 mol dm™ HCI is
known to afford (25,3 R)-D-erythro-(anti)-sphingosine 5.3¢

Treatment of (F)-cinnamaldehyde 7a with hex-1-enylethyl-
zinc 2a in the presence of (§)-DPMPM (10 mol%) in toluene at
0 °C gave the chiral diallyl-alcohol, 1-phenylnona-1,4-dien-3-ol
8a (59% yield), with 77% e.e. (Table 2, entry 1). Other chiral
diallyl alcohols with 73-75%; e.e.’s were also obtained (Table 2,
entries 2 and 3).

Experimental
Typical Experimental Procedure (Table 1, FEntry 3).—
Cyclohexene (2.28 mmol) 7 was added to a toluene solution of

1 Determined by 'H NMR (500 MHz, C¢Dy, 60 °C) analysis. erythro-
(anti)-3, 0 4.285 (br s); threo-(syn)-4, 4.391 (t, J 7.0); see ref. 3(c).
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Table 1 Diastereoselective addition of pentadec-l-enyl(ethyl)zinc 2 to the chiral aldehyde 1 with DPMPM as a chiral catalyst or with

2-(dibutylamino)ethanol 6 as an achiral catalyst

Entry Chiral catalyst Yield (%) erythro-(anti)-3: threo-(syn)-4°
1 (R)-DPMPM 4:1

(S)-DPMPM 2:1
3 2-(Dibutylamino)ethanol 6 7.3:1

“ See footnote 1.

Table 2 Catalytic enantioselective synthesis of the chiral diallyl alcohol 8 with (S)-DPMPM as a chiral catalyst

Diallyl alcohol 8

Aldehyde  Alkenylzinc
Entry 7 2 [e]p (T/°C, c, benzene)  Yield (%4)® E.e. (%ee)’
1 Ta 2a 8a +39.8 (24,2.0) 59 77
2 b 2a 8b +9.4(22,1.3) 56 75
3 7b 2b 8¢ +13.7(24,1.3) 39 73

¢ In units of 107! deg cm? g*. ® Isolated yields. All new compounds gave satisfactory results for NMR, IR and high MS measurements. ¢ Determined

by HPLC analyses using a chiral column (Chiralcel OD).

RZ

a R®*=Bu
2=Me b R®=Me(CH,);,

o Chiral catalyst

Toluene, 10 (S)-DPMPM

OH

a R'=Ph,R?=H,R*=Bu
b R'=Ph, R?=Me, R®=Bu
¢ R'=Ph, R? = Me, R®= Me(CH,)1,

borane-dimethyl sulfide complex (2 mol dm™3; 0.55 cm3, 1.1
mmol) at 0 °C. The mixture was stirred for 3 h at 0 °C, after
which pentadec-1-yne (1.14 mmol) was added to it. After being
stirred for 1 h, the mixture was cooled to —25°C and Et,Zn
(1 mol dm™ toluene solution; 1.2 mmol) and 2-(dibutyl-
amino)ethanol (0.012 g, 0.07 mmol) in toluene (2 cm?) were
added to it. The mixture was then placed in an ice-bath and the
chiral aldehyde 1 (0.181 g, 0.74 mmol) in toluene (2 cm?) was
added to it. The mixture was stirred for 1.5 h, after which it was
treated with saturated aq. NH,Cl (15 cm®) to quench the
reaction. The mixture was then extracted with AcOEt (3 x 15
cm?®) and the combined extracts were washed with brine,
dried (Na,SO,) and evaporated under reduced pressure.
Purification of the residue by silica gel TLC (developing
solvent: hexane—ethyl acetate, 3:1) afforded 3 and 4 (0.164 g;
total yield 50%).

As described, protected erythro-sphingosine has been syn-
thesized by diastereoselective alkenylation of a chiral aldehyde
with chiral or achiral amino alcohols as catalysts. Chiral diallyl
alcohols were also obtained by the enantioselective alkenylation
of prochiral «,B-unsaturated aldehydes using DPMPM as a
chiral catalyst.
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